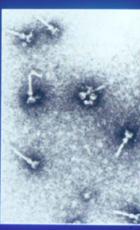


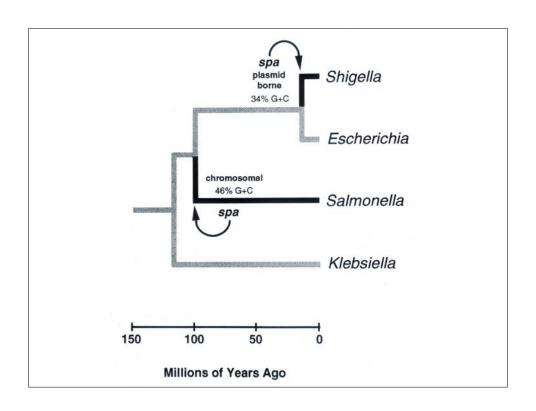
WHAT MAKES SALMONELLA PATHOGENIC?

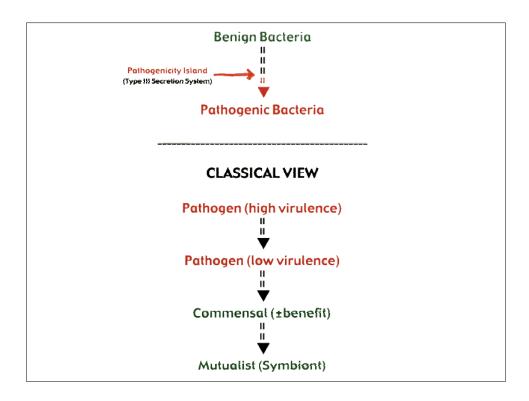
- 1. The presence of *Salmonella*-specific sequences encoding virulence functions.
- 2. Allelic variation in the same set of genes.
- 3. Differential regulation of the same set of genes.
- 4. The absence of a "repressor of virulence functions" from the *Salmonella* genome.



PATHOGENICITY ISLANDS

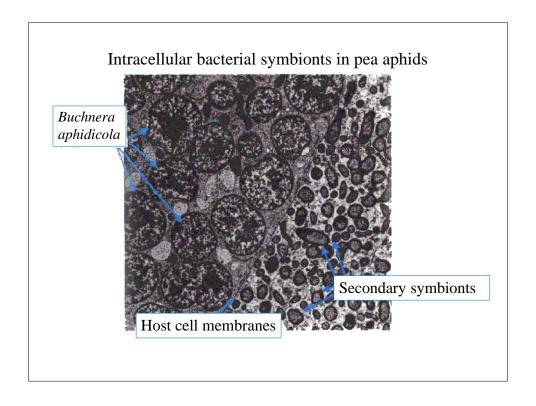
- . Segments of the chromosome harboring large clusters of virulence genes
- . Present in pathogenic strains but absent or sporadically distributed in related non-pathogenic species
- . Typically have a G+C content different from that of the rest of the chromosome
- . Often associated with tRNA genes and/or mobile genetic elements at their boundaries

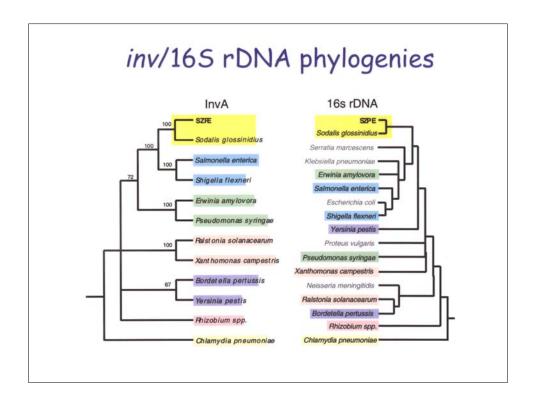

TYPE III SECRETION SYSTEMS


- . Specialized protein export machineries used by Gram-negative pathogens and symbionts to deliver toxic proteins into the host cell cytosol
- . Require a large number of accessory proteins to export substrates across both the inner and outer membranes
- . Secreted substrates lack typical Sec-dependent signal sequences
- . Host signals activate secretion and delivery of virulence proteins into host tissues

Kubon, et al, 1998

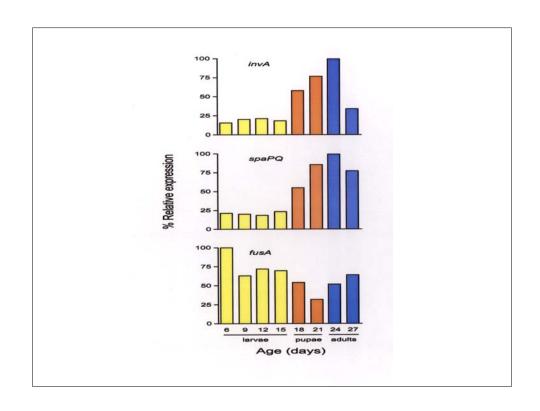
in Other Bacterial Pathogens					
Salmonella	Shigella	Yersinia	EHEC	Plant pathogens*	Flagellar
nvA	MxIA	LcrD	SepA	HrpO/HreV	FIhA
nvG	MxID	YscJ	SepC	HrpA/HrcC	_
SpaL	Spa47	YscN	SepB	HrpE/HrcN	FIII
SpaO	Spa33	YscQ		HrpQ/HrcQ	FIIN
SpaP	Spa24	YscR	Sepi	HrpT/HrcR	FIIP
SpaQ	Spa9	YscS	SepH	HrpU/HrcS	FIIQ
paR	Spa29	YscT	SepG	HrpC/HrcT	FIIR
SpaS	Spa40	YscU	SepF	HrpN/HrcU	FIhB
rgH	MxIG	 -			
rgK	MxIJ	YscJ	SepD	Hrpl/HrcJ	FIIF
nvE	MxIC	LcrH	SepE		FIIH
paK	Spa15	- The second	_		FIIH




Bacterial Symbionts of Insects

- Occur in a very broad range of insects (P. Buchner, 1965)
- Bacteria required for insect survival ('primary' endosymbionts)
- Make up for deficiencies in the host diet.
- Reside within specialized host organs (bacteriomes, mycetomes)
- Strict vertical inheritance (eggs infected by maternal symbionts)

This is a switch from 'secondary' symbionts (and pathogens) that are not required by the host and transmitted *horizontially*



Expression of the inv/spa genes in vivo

· Sitophilus spp. are holometabolous insects

- →Synchronized Sitophilus reproduction by allowing adults to mate and oviposit in maize over 24h
- -Prepared RNA from isolated mycetomes at time intervals following oviposition (BACTERIONES)
- -Performed RT-PCR analysis using Lightcycler

Conclusions:

- Type III secretion system acquired by ancestor of this symbiont prior to establishing obligate relationship with host.
- Type (I) secretion system in symbiont homologous to that used for host cell invasion by bacterial pathogens.
- Type III secretion system has been adopted to maintain obligate symbiosis (to recolonize new bacteriome).
- First molecular genetic evidence for an apparatus used by pathagens to ald in the conversion to mutualism.